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Whether we recognise them as such or not, connections on fibre bundles appear quite frequently
in modern theoretical physics. This treatise is intended to be the document I wish I had as
a theoretical physics student - and thus takes a unique route through the subject. Rather
than present Riemannian geometry, Yang-Mills theory and spin connections as philosophically
similar but seemingly distinct subjects, I have endeavoured to present them all under the banner
of a single unifying theory. As usual, abstraction is the price of generality, but I think in this
case it is well worth paying. Unfortunately, unless I eventually expand these musings into a
complete book, the reader may require a somewhat eclectic base of pre-requisite differential
geometry knowledge to comprehend what follows. As such this presentation is not very useful
without a prior “first-pass” exposure to some of the topics I discuss. Nothing I present here is
original - my only contribution is to collate results spread across various sources and various
sections within each source. I have relied heavily on Jack Smith’s Cambridge Part III course
on differential geometry and Mikio Nakahara’s “Geometry, topology and physics.”

1 General theory

Before I plough ahead with connections and fibre bundles, I’ll clarify what I mean by a vector
in a tangent space because my favoured definition is slightly non-standard (albeit ultimately
equivalent to the standard one).

Definition 1.1 (Curve based at p). A curve based at p ∈ M is defined to be a smooth map,
γ : I → M , where I is a connected open neighbourhood of R and γ(0) = p.

Definition 1.2 (Agreement to 1st order). Two curves based at p, γ1 and γ2, are defined to
agree to 1st order at p if and only if ∃ a chart, say φ : V → W , about p such that

dφ(γ1(t))

dt

∣∣∣
t=0

=
dφ(γ2(t))

dt

∣∣∣
t=0

(1)

as vectors in Rdim(M).
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Corollary 1.2.1. If the condtion above holds for some chart about p, then it holds for all
charts about p.

Proof. Let dim(M) = n. For a chart, φ : V → W , about p, let πφ
p : {curves based at p} → Rn

be defined by

πφ
p : γ 7→ dφ(γ(t))

dt

∣∣∣
t=0

= (φ ◦ γ)′(0) (2)

Let φ1 and φ2 be two different charts about p.

∴ πφ2
p (γ) = (φ2 ◦ γ)′(0) (3)

= (φ2 ◦ φ−1
1 ◦ φ1 ◦ γ)′(0) (4)

= (φ2 ◦ φ−1
1 )′((φ1 ◦ γ)(0))(φ1 ◦ γ)′(0) by the chain rule of Rn (5)

= A ◦ πφ1
p (γ) (6)

where A = (φ2 ◦φ−1
1 )′(φ1(p)). Since A is invertible (the inverse is (φ1 ◦φ−1

2 )′(φ2(p))), it follows
that πφ2

p (γ1) = πφ2
p (γ2) ⇐⇒ πφ1

p (γ1) = πφ1
p (γ2). □

Corollary 1.2.2. Agreement to 1st order is an equivalence relation on the set of curves based
at p.

Definition 1.3 (Tangent space). The tangent space to M at p, denoted TpM , is defined to be
{curves based at p}/agreement to first order, i.e. TpM = {[γ]}. The equivalence classes, [γ],
are called vectors (at p).

This definition can be shown to be completely equivalent to the standard definition using
derivations at p, although I think it would be too much of a digression to prove that here.
However, the definition presented here is better for a number of reasons. Philosophically, it
is much more geometric in nature - I think that better aligns with the spirit of differential
geometry than introducing derivations at each point, which I find unnecessarily abstract. At
a more low-brow level, the equivalence class definition makes it manifest that dim(TpM) =
dim(M), where as one would intuitively think that the space of derivations is horribly infinite
dimensional (because the manifolds are only assumed to be smooth, not analytic). From

the equivalence class point of view, the coordinate basis, {∂i}dim(M)
i=1 , in some chart, φ, would

be {(πφ
p )

−1(ei)}dim(M)
i=1 where {ei}dim(M)

i=1 is the standard basis of Rdim(M) and πφ
p is defined by

equation 2. Finally, the equivalence class definition also makes the pushforward much more
transparent.

Definition 1.4 (Pushforward/tangent map/dragging/differential/derivative/total derivative/
insertYourOwnNomenclatureHere). Let f : M → N be a smooth map. Then, the pushforward
of f at p ∈ M is defined to be the linear map, f∗ : TpM → Tf(p)N , given by f∗[γ] = [f ◦ γ].

I will also deploy the following convention for defining tangent vectors to curves. If a vector,
v, is given by [γ], then I will also write v = dγ(t)

dt
|t=0. For example, the integral curves, γ(t), of

a vector field, v(p), would satisfy dγ(t)
dt

= v(γ(t)).

Having addressed these administrative wrinkles and assumed a sufficient background in differ-
ential geometry, I am ready to zoom ahead to the main topics I wish to present.

Definition 1.5 (Differentiable fibre bundle). A differentiable fibre bundle is a collection,
(E,B, F, π,G), such that
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1. E is a manifold, called the total space.

2. B is a manifold, called the base.

3. F is a manifold, called the fibre.

4. π : E → B is a smooth surjection, called the projection.

5. G is a Lie group, called the structure group, having some specific left group action on F .

6. ∃ an open cover, {Vα}α∈A, of B such that ∀α, ∃ a diffeomorphism, Φα : π−1(Vα) → Vα×F .
The Vα and Φα are together called a local trivialisation.

7. ∀α, pr1 ◦ Φα = π, where pr1 is projection on the first set in a cartesian product.

8. ∀α, β, the map, Φβ ◦ Φ−1
α : (Vα ∩ Vβ)× F → (Vα ∩ Vβ)× F , is of the form,

(p, f) 7→ (p, gβα(p)·f), for some smooth functions, gβα : Vα∩Vβ → G, called the transition
functions.

In practice, it is impossible to present this wealth of data in any compact notation. Thus, when
the contexts are clear, a differentiable fibre bundle will simply be presented as π : E → B.

Definition 1.6 (Section). Given a differential fibre bundle, π : E → B, a section is defined to
be a smooth map, s : B → E, such that π ◦ s = idB. A local section is defined in exactly the
same way, except that the domain of s only has to be some open set, V ⊆ B.

Sections will be indispensable later. But now, I would like to introduce two particular types of
differentiable fibre bundle that will play a starring role in the theory of connections.

Definition 1.7 (Principal G-bundle). A principal G-bundle is a differential fibre bundle with
structure group and fibre both G. Furthermore, the left group action must be left (group)
multiplication.

Henceforth, I will abbreviate “principal G-bundle” to just “principal bundle” or “G-bundle”
depending on context and the whims of my taste. Every G-bundle carries a canonical right
G-action.

Definition 1.8 (Canonical right G-action). Given a G-bundle, π : P → B, the canonical right
G-action is defined in trivialisations as follows.
Let p ∈ P , let Φα be a local trivialisation around p and let Φα(p) = (b, g). Then, h ∈ G is
defined to act by p · h = Φ−1

α (b, gh).

Corollary 1.8.1. The canonical right G-action is independent of the the choice of trivialisation
because the transition functions act on the left.

Corollary 1.8.2. The canonical right G-action is free.

There is also an infinitesimal version of this group action.

Definition 1.9 (Canonical right g-action). Given a G-bundle, π : P → B, ξ ∈ g is defined
to act by p · ξ = d

dt
(p · etξ)|t=0, where e· is the exponential map. Thus, the output, p · ξ, is an

element of TpP .

Theorem 1.10. For a principal bundle, π : P → B, the canonical right G-action provides a
correspondence between local trivialisations and local sections.
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Proof. Let Φα be a local trivialisation over a trivialising patch, Vα. Then, I can define a local
section, sα : Vα → P , by sα(b) = Φ−1

α (b, e). This really is a local section because sα is mani-
festly smooth and (π ◦ sα)(b) = (π ◦ Φ−1

α )(b, e) = pr1(b, e) = b.
Conversely, let s : V → P be a local section. Then, I can define ϕ : V × G → P by
ϕ(b, g) = s(b) · g.
Then, ϕ(b, g) = ϕ(b, h) ⇐⇒ s(b) · g = s(b) · h ⇐⇒ g = h because the group action is free.
∴ ϕ is injective. It also manifestly has all possible smoothness properties.
∴ {s(b) · g | b ∈ V, g ∈ G} is in bijection with {(b, g) | b ∈ V, g ∈ G} = V ×G.
As P is a principal bundle, there must exist some trivialisation, φ, around π−1(b). In this trivi-
alisation, s(b) ·g = φ−1(b, g). But, because φ is a diffeomorphism on some open neighbourhood
of π−1(b), varying g means s(b) · g varies over all of π−1(b).
∴ The ϕ above provides a diffeomorphism between π−1(b) and V ×G.
∴ ϕ−1 is the required local trivialisation. □

Corollary 1.10.1. A principal bundle is trivial (i.e. diffeomorphic to B ×G) if and only if it
admits a global section.

The other prominent example of a differentiable fibre bundle is the vector bundle.

Definition 1.11 (Vector bundle). A rank-k vector bundle is a differential fibre bundle where
the fibre is Rk, the structure group is GL(k,R) and the left group action is matrix multiplication.

Although I have introduced them very generally, examples of vector bundles are almost certainly
already familiar to any reader who satisfies the pre-requisites I’m assuming. In particular, I’ll
assume (although it won’t be needed unti section 2) the reader is familiar with tangent bundles,
cotangent bundles and the various tensor bundles generated from these. Furthermore, it can be
shown using the “pseudo-atlas” construction that specifying the transition functions (and thus
trivialising neighbourhoods) is sufficient for uniquely determining a vector or principal bun-
dle (up to an appropriate notion of isomorphism). This is a point I do not wish to belabour here.

The central concept underpinning this treatise is connections on principal bundles.

Definition 1.12 (Connection on a principal bundle). Let π : P → B be a G-bundle. A
connection on P is defined to be a g-valued 1-form, A, on P (i.e. A ∈ g ⊗ Γ(T ∗P ) where Γ
denotes the set of sections) such that

1. Ap(p · ξ) = ξ ∀p ∈ P, ξ ∈ g.

2. (Rg)
∗A = Adg−1A ∀g ∈ G.

This definition requires a fair bit of interpretation (so here it is ...).
Ap denotes A at the point, p, and it’s the covector part of Ap that acts on p · ξ, with the
“g-valued” part just coming along for the ride.
(Rg)

∗ is the pullback of A under the canonical right G-action, i.e. Rg : P → P by Rg : p 7→ p·g.
Again, the “g-valued” part of A just comes along for the ride.
In my conventions, the adjoint representation is defined to be the pushforward,
Adg(ξ) = (Cg)∗ξ, where g ∈ G, ξ ∈ g and for any h ∈ G, Cg(h) = ghg−1. Thus, in Adg−1A,
the Adg−1 acts on the “g-valued” part and the 1-form part comes along for the ride.

At this point, a connection looks ridiculously esoteric and unuseful. But, it’s power is slowly re-
vealed with the correct/lucky exploration. In the physics community, connections are typically
defined using their local versions, and corresponding properties, on the base space.
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Definition 1.13 (Local connection 1-form). Let Φα be a local trivialisation of P corresponding
to a local section, sα. Then, the local connection 1-form is defined to be Aα = (sα)

∗A. Thus,
Aα ∈ g⊗ Γ(T ∗Vα).

Theorem 1.14. On overlaps of trivialising patches, the local connection 1-forms are related
by1 Aα = g−1

βαdgβα +Adg−1
βα
Aβ ⇐⇒ Aβ = gβαdg

−1
βα +AdgβαAα.

Proof. Before boldly going into the proof, it’s best elucidate the theorem’s meaning.
dgβα is a local 1-form with values in TgβαG, i.e. dgβα ∈ TgβαG⊗ Γ(T ∗Vα).

g−1
βαdgβα is shorthand2 for (Lg−1

βα
)∗dgβα.

∴ The pushforward gives an output in TeG⊗ Γ(T ∗Vα) = g⊗ Γ(T ∗Vα), as required.
Let Φα be the trivialisation corresponding to sα. Then, for any b ∈ Vα ∩ Vβ and h ∈ G,
(Φβ ◦ Φ−1

α )(b, h) = (b, gβα(b)h).
However, (Φβ ◦ Φ−1

α )(b, h) = Φβ(sα(b) · h)
∴ Φβ(sα(b) · h) = (b, gβα(b)h) = Φβ(sβ(b) · (gβα(b)h)).
∴ sα(b) · h = sβ(b) · (gβα(b)h) as Φβ is injective.
∴ sα(b) = sβ(b) · gβα(b) by acting with h−1 on both sides.
Let [γ(t)] be an arbitrary element of TbB. Then, by the definition of pushforward,

(sβ)∗[γ] = (sα · g−1
βα)∗[γ] (7)

= [(sα · g−1
βα) ◦ γ] (8)

= [(sα ◦ γ) · g−1
βα(γ)] (9)

The equivalence classes are defined by their derivative at t = 0. Using primes for derivatives,

((sα ◦ γ) · g−1
βα(γ))

′(0) = (sα ◦ γ)′(0) · g−1
βα(γ(0)) + (sα ◦ γ)(0) · g−1

βα(γ)
′(0) (10)

= (sα ◦ γ)′(0) · g−1
βα(b) + sα(b) · g−1

βα(γ)
′(0) (11)

= (sα ◦ γ)′(0) · g−1
βα(b) + sβ(b) · gβα(b) · g−1

βα(γ)
′(0) (12)

∴ (sβ)∗[γ] = (Rg−1
βα
)∗[sα ◦ γ] + (sβ(b) · (gβα(b)dg−1

βα))([γ]) (13)

= (Rg−1
βα
)∗(sα)∗[γ] + (sβ(b) · (gβα(b)dg−1

βα))([γ]) (14)

∴ (sβ)∗ = (Rg−1
βα
)∗(sα)∗ + sβ(b) · (gβα(b)dg−1

βα) as [γ] is arbitrary (15)

Finally, let v be an arbitrary element of TbB (I won’t need the equivalence class representation
this time).

∴ Aβ(v) = ((sβ)
∗A)(v) (16)

= A((sβ)∗v) (17)

= A((Rg−1
βα
)∗(sα)∗v + (sβ · (gβαdg−1

βα))v) (18)

= (Rg−1
βα
)∗A((sα)∗v) +A((sβ · (gβαdg−1

βα))v) (19)

= (AdgβαA)((sα)∗v) + (gβαdg
−1
βα)(v) from the axioms of A (20)

= (Adgβα(sα)
∗A)(v) + (gβαdg

−1
βα)(v) (21)

= (AdgβαAα)(v) + (gβαdg
−1
βα)(v) (22)

∴ Aβ = AdgβαAα + gβαdg
−1
βα , as v is arbitrary. □

1Some of the notation to follow is explained in the proof (meaning you have no choice but to read it).
2When G is a matrix Lie group, the pushforward is just matrix multiplication and so this is no longer

shorthand, but literally what is intended.
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This theorem encompasses the typical point of view on connections in the physics community.
Luckily, it’s also possible to go from here back to the mathematician’s perspective.

Theorem 1.15. Given a set of g-valued 1-forms, Aα, related to each other by

Aβ = AdgβαAα + gβαdg
−1
βα , (23)

∃ a G-bundle, π : P → B, such that the Aα are the local connection 1-forms of a connection,
A, on P .

Proof. The transition functions completely specify the bundle up to isomorphism, so a G-
bundle with transition functions, gβα, exists.
I’ll start by defining a connection, Aα, on π−1(Vα).
Let p ∈ π−1(Vα) ⊆ P , let b = π(p) and let p = sα(b) · g. Then, define Aα,p by

Aα,p = Adg−1π∗Aα + g−1dg (24)

where d is the exterior derivative on P in this case.
Let v be an arbitrary element of TbVα. Then, since g = e for p = sα(b),

((sα)
∗Aα,sα(b))(v) = Aα,sα(b)((sα)∗v) (25)

= π∗Aα((sα)∗v) + dg((sα)∗v) (26)

= Aα(π∗(sα)∗v) + dg((sα)∗v) (27)

= Aα(v) (28)

since π ◦ sα = id =⇒ π∗(sα)∗ = id and dg((sα)∗v) = 0 as g = e along (sα)∗v.
The upshot is that Aα really is the local connection 1-form of Aα.
Next, I have to show that on overlaps Aα = Aβ, thereby allowing me to define a A globally.
From the transformation property of the Aα and sα = sβ · gβα (proved in the last theorem’s
proof),

Aβ = Ad(gβαg)−1π∗Aβ + (gβαg)
−1d(gβαg) (29)

= Ad(gβαg)−1π∗(AdgβαAα + gβαdg
−1
βα) + g−1g−1

βαd(gβαg) (30)

The π∗ relates the 1-form parts on P and B, where as the Ad acts on the g-valued part.
∴ They commute.

∴ Ad(gβαg)−1π∗AdgβαAα = Adg−1g−1
βα
π∗AdgβαAα = Adg−1g−1

βα
Adgβαπ

∗Aα = Adg−1π∗Aα (31)

As for the other terms, bearing in mind my notation that gβαdg
−1
βα really means (Lgβα)∗dg

−1
βα ,

g−1g−1
βαd(gβαg) = g−1g−1

βαd(gβα)g + g−1g−1
βαgβαdg (32)

= Adg−1g−1
βαd(gβα) + g−1dg (33)

= −Adg−1d(g−1
βα)gβα + g−1dg (34)

= −Adg−1(Rgβα)∗d(g
−1
βα) + g−1dg (35)

There should be a pullback here for this expression to really make sense, because dg is a (TgG-
valued) 1-form on P , where as dg−1

βα is a (Tg−1
βα
G-valued) 1-form on B. So really, the correct

expression is

g−1g−1
βαd(gβαg) = −Adg−1(Rgβα)∗π

∗d(g−1
βα) + g−1dg (36)
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Putting these expressions back into equation 30, I get

Aβ = Adg−1π∗Aα +Adg−1g−1
βα
π∗gβαdg

−1
βα − Adg−1(Rgβα)∗π

∗d(g−1
βα) + g−1dg (37)

= Adg−1π∗Aα +Adg−1(Rgβα)∗π
∗dg−1

βα − Adg−1(Rgβα)∗π
∗d(g−1

βα) + g−1dg (38)

= Adg−1π∗Aα + g−1dg (39)

= Aα (40)

Finally, I have to check that the A I have defined using 24 actually satisfies the axioms of a
connection. For that, let ξ ∈ g. Then,

Ap(p · ξ) = Adg−1π∗Aα(p · ξ) + g−1dg(p · ξ) (41)

= Adg−1Aα(π∗(p · ξ)) + g−1dg(p · ξ) (42)

The first term has π∗(p · ξ) = π∗
d
dt
(p · etξ)|t=0 = π∗[p · etξ] = [π(p · etξ)] = [0] since the canonical

right G-action only acts within a fibre and so doesn’t change the output under π. That leaves

Ap(p · ξ) = g−1dg(p · ξ) (43)

= (Lg−1)∗dg([p · etξ]) (44)

= (Lg−1)∗
d

dt

(
g(p · etξ)

)∣∣∣
t=0

(45)

where g(p ·etξ) means the group element required to generate p ·etξ by acting with the canonical
right action on sα(b). But, by definition, p ∈ π−1(b) is generated by g3. Thus,

Ap(p · ξ) = (Lg−1)∗
d

dt

(
getξ

)∣∣∣
t=0

(46)

=
d

dt

(
g−1getξ

)∣∣∣
t=0

(47)

= ξ (48)

For the remaining axiom, let v be an arbitrary element of TpP . Then, (Rh)
∗A(v) = A((Rh)∗v).

The pushforward means that (Rh)∗v is a vector in the tangent space of the point, sα(b) · (gh),
not just sα(b) · g.

∴ (Rh)
∗A(v) = Ad(gh)−1π∗Aα((Rh)∗v) + (gh)−1d(gh)((Rh)∗v) (49)

= Adh−1g−1Aα(π∗(Rh)∗v) + h−1g−1d(gh)((Rh)∗v) (50)

The right G-action only acts within a fibre =⇒ π ◦Rh = π =⇒ π∗(Rh)∗ = π∗. In the second
term, h is just a constant, so d(gh)((Rh)∗v) = (Rh)∗(dg(v)).

∴ (Rh)
∗A(v) = Adh−1g−1Aα(π∗v) + h−1g−1(Rh)∗dg(v) (51)

= Adh−1Adg−1π∗Aα(v) + Adh−1g−1dg(v) (52)

= Adh−1A(v) (53)

Thus, (Rh)
∗A = Adh−1A as v was arbitrary. □

I think a brief sanity check is also in order before proceeding further.

3Unfortunately, the same symbol, g, effectively has two different meanings in these expressions. It may be
better to use g and g0 to clarify this, but that will lead to its own notational irritations.
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Theorem 1.16. Every G-bundle, π : P → B, admits a connection.

Proof. Cover P with trivialisations, Φα, over Vα. Next, choose all the Aα to be zero. These
define connections, Aα, on π−1(Vα), but not the whole space and without being pieced together
properly on overlaps. To get around that, define A globally by

Ap =
∑
α

ρα(π(p))Aα,p (54)

where {ρα} is a partition of unity subordinate to {Vα}.

∴ Ap(p · ξ) =
∑
α

ρα(π(p))Aα,p(p · ξ) (55)

In this equation, ρα(π(p)) is only non-zero on π−1(Vα) and on each π−1(Vα), Aα,p(p · ξ) = ξ.
∴ Ap(p · ξ) =

∑
α ρα(π(p))ξ = ξ, from the definition of a partition of unity.

For the other axiom, I can use the exact same logic about ρα(π(p)) being non-zero only on
π−1(Vα), where the axiom holds, to get

(Rg)
∗A =

∑
α

(ρα ◦ π)(Rg)
∗Aα =

∑
α

(ρα ◦ π)Adg−1Aα = Adg−1A (56)

as required. □

In physics, connections are introduced as compensating terms to make derivatives transform
covariantly under some gauge redundancy. I will discuss this at length in section 2. But, before
that, I will note a purely geometric interpretation of what the connection actually means on
the total space4.

Definition 1.17 (Vertical subspace). For a G-bundle, π : P → B, the vertical subspace at
p ∈ P , denoted T v

p P , is defined to be T v
p P = ker(π∗ : TpP → Tπ(p)B).

Geometrically, the vertical subspace is the set of all directions within a single fibre embedded
in P . Thus, T v

p P = TpPπ(p) where Pπ(p) = π−1(π(p)) is the fibre. Since the canonical right
G-action fully generates each fibre, it also follows that upon considering the canonical right
g-action, T v

p P = p · g.

Definition 1.18 (Horizontal distribution). A horizontal subspace at p is defined to be any
subspace whose direct sum with T v

p P is the whole of TpP . A horizontal distribution is then
defined to be a distribution on P (i.e. a subbundle of TP ) which is a horizontal subspace at
every point.

The next theorem encapsulates the proclaimed purely geometric interpretation of a connection
on a principal bundle.

Theorem 1.19. A connection on a G-bundle, π : P → B, is equivalent to choosing a horizontal
distribution, H, satisfying (Rg)

∗H = H, where Rg (again) denotes the canonical right G-action.

Proof. First assume I have a connection, A, on a G-bundle. Define a distribution, H, by
H = ker(A).
A is g-valued and all values in g can be output (as Ap(p · ξ) = ξ and ξ is arbitrary).

∴ dim(H) = dim(P )− dim(g) by the rank− nullity theorem (57)

= dim(P )− dim(T vP ) as g generates the vertical subspaces (58)

4Typically, in the kind of discussion that follows, people end up making some reference or the other to parallel
transport. I, on the other hand, will deliberately avoid any further mention of parallel transport because I don’t
think it’s particularly useful and I don’t understand it very well anyway.
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meaning H has the correct dimension to be a horizontal distribution. Thus, I only have to show
that it doesn’t intersect any of the vertical subspaces non-trivially. For that, let v ∈ H ∩ T vP .
At each point, p, elements of T v

p P can be written as p · ξ for some ξ ∈ g.
∴ ∃ a ξ such that p · ξ = vp.
Then, vp ∈ Hp = ker(Ap) =⇒ 0 = Ap(p · ξ) = ξ =⇒ H really is a horizontal distribution.
For the right invariance condition, let v ∈ Hp ⇐⇒ Ap(v) = 0.
By definition, (Rg−1)∗v ∈ Tp·g−1P . Furthermore,

Ap·g−1((Rg−1)∗v) = ((Rg−1)∗Ap·g−1)(v) (59)

= AdgAp(v) by the 2nd axiom of a connection (60)

= 0 as Ap(v) = 0 (61)

∴ (Rg−1)∗v ∈ Hp·g−1 , which then implies (Rg−1)∗H ⊆ H.
∴ (Rg)

∗H = H as Rg−1 acts bijectively on each fibre and Rg = (Rg−1)−1.
For the converse, assume I have a horizontal distribution with (Rg)

∗H = H. Since a horizontal
subspace direct sums with a vertical subspace to give the whole tangent space, it follows that
every v ∈ TpP can be written uniquely as v = p · ξ + h for some ξ ∈ g and h ∈ Hp.
Use this to define A as acting by Ap(v) = Ap(p · ξ + h) = ξ.
Note that this definition is consistent with H = ker(A) from the first half of the proof. As for
the axioms (of a connection) themselves, it’s immediate that Ap(p · ξ) = ξ. The 2nd is less
straightforward.

(Rg)
∗(Ap(p · ξ + h)) = Ap·g((Rg)∗(p · ξ + h)) (62)

= Ap·g((Rg)∗(p · ξ)) +Ap·g((Rg)∗(h)) (63)

(Rg)
∗H = H ⇐⇒ (Rg−1)∗H = H and g arbitrary means that (Rg)∗h is still in the horizontal

distribution.
∴ It lies in the kernel of Ap·g.

∴ (Rg)
∗(Ap(p · ξ + h)) = Ap·g((Rg)∗(p · ξ)) (64)

= Ap·g

(
(Rg)∗

d

dt

(
p · etξ

)∣∣∣
t=0

)
(65)

= Ap·g

(
d

dt

(
p · etξg

)∣∣∣
t=0

)
(66)

= Ap·g

(
d

dt

(
p · gg−1etξg

)∣∣∣
t=0

)
(67)

= Ap·g((p · g) · Adg−1ξ)) (68)

= Adg−1ξ (69)

= Adg−1Ap(p · ξ + h)) (70)

Since p, ξ and h are arbitrary, it follows that (Rg)
∗A = Adg−1A, thus proving that A really is

a connection. □

Definition 1.20 (Horizontal section). A section (local or global), s, of a G-bundle, π : P → B,
with connection, A, is called horizontal if and only if it’s tangent to the associated horizontal
distribution.

Corollary 1.20.1. s is horizontal if and only if s∗A = 0.

Proof. ∀v ∈ Tπ(p)B, (s∗A)(v) = A(s∗v) and H = ker(A). □
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The subject of connections is intimately linked to attempts to quantify the intuitive notions of
(intrinsic) curvature. Philosphophically, curvature is the obstruction to flatness.

Definition 1.21 (Flat). A connection if called flat if and only if it’s associated horizontal
distribution is integrable (i.e. the distribution is closed under the Lie bracket, which is equivalent
to the distribution arising from a foliation, due to Frobenius’ theorem).

There are a number of other ways to define flatness - I list them in the following theorem.
From a physics point of view, the last one is the most useful and insightful.

Theorem 1.22. For a connection, A, on a G-bundle, π : P → B, the following are equivalent.

1. A is flat.

2. P is foliated by local horizontal sections.

3. P has a local horizontal section over each point in B.

4. P can be covered by trivialisations, Φα, such that all the Aα are zero.

Proof. (1) is equivalent to (2) from the definition of integrable.
(2) =⇒ (3) because (2) is a stronger version of (3).
(3) ⇐⇒ (4) because trivialisations, Φα, correspond to local sections, sα, which are horizontal
if and only if 0 = (sα)

∗A = Aα.
Finally, (3) =⇒ (2) as follows. Since (3) holds, For any point, p ∈ P , ∃ a section, s, over
some open neighbourhood, V , of π(p).
Then, the right translates, (Rg)∗s, foliate P over V and are horizontal by construction. □

Before defining curvature, I have to first define a confusing piece of notation.

Definition 1.23 (Bracket-wedge). Let σ and τ be g-valued differential forms. More explicitly,
let σ = ξi ⊗ σi and τ = ηi ⊗ τi, where ξi, ηj ∈ g, σi & τj are p & q forms respectively and the
summation convention is in effect. Then, the bracket-wedge, [σ ∧ τ ], is defined by

[σ ∧ τ ] = [ξi, ηj]⊗ (σi ∧ τj) (71)

Corollary 1.23.1. Because of the Lie bracket’s and the wedge product’s antisymmetry,
[σ ∧ τ ] = (−1)pq+1[τ ∧ σ].

Definition 1.24 (Curvature). Given a connection, A, on a G-bundle, π : P → B, its curva-
ture, F , is a g-valued 2-form on P defined by F = dA+ 1

2
[A ∧A].

I pontificated earlier that curvature was the obstruction to flatness. Hence, it is only natural
that there must be some theorem like the next one.

Theorem 1.25. A connection, A, on a G-bundle, π : P → B, is flat if and only if F = 0.

Proof. Let v be the vertical vector field defined by v(p) = p · ξ for some fixed ξ ∈ g.
By defintion, ιvF = ιvdA+ 1

2
ιv[A ∧A].

Decompose A as ηi ⊗ σi.
∴ 1

2
ιv[A ∧A] = 1

2
[ηi, ηj]⊗ ιv(σi ⊗ σj − σj ⊗ σi) = [σi(v)ηi, ηj]⊗ σj.

But at each point, p, σi(v)ηi = (ηi ⊗ σi)(v) = Ap(v(p)) = Ap(p · ξ) = ξ.

10



∴ ιv[A∧A] = [ξ,A], with the 1-form part of A just coming along for the ride in the Lie bracket.
Then, from the definition of the Lie bracket,

[ξ,A] =
d

dt

(
AdetξA

)∣∣∣
t=0

(72)

=
d

dt
((Retξ)

∗A)|t=0 by the 2nd connection axiom (73)

= −LvA as Retξ is the flow of − v (74)

= −ιvdA− d(ιvA) by Cartan′s magic formula (75)

But, as above, ιvA = A(v) = ξ =⇒ d(ιvA) = dξ = 0 as ξ doesn’t vary across P . Hence,
[ξ,A] = −ιvdA.
∴ ιvF = ιvdA+ [ξ,A] = 0 =⇒ F(v, w) = 0 for any vertical vector field, v5.
∴ F(v, w) = 0 for any vertical vector field, w, as well, because F(v, w) = −F(w, v).
∴ F = 0 ⇐⇒ F(v, w) = 0 when both v and w are horizontal vector fields.
Since the horizontal distribution is defined by ker(A), when acting on horizontal vector fields,
F(v, w) = (dA)(v, w).
Finally, by Frobenius’ theorem, A is flat ⇐⇒ dA vanishes when acting on ker(A) = H.
∴ F = 0 ⇐⇒ A is flat. □

Like connections, in physics one tends to work with a local expression for curvature.

Definition 1.26 (Local curvature 2-form). Given a section, sα, corresponding to a trivialisa-
tion, Φα, the local curvature 2-form is defined to be Fα = (sα)

∗F = dAα + 1
2
[Aα ∧ Aα].

Corollary 1.26.1. In local coordinates (strictly, this requires taking the intersection of the bun-
dle trivialising patches and coordinate patches), dropping the α subscripts, the local curvature
2-form components, Fij = −Fji, are given by

1

2
Fijdx

i ∧ dxj = d(Aidx
i) +

1

2
[Aidx

i, Ajdx
j] (76)

= ∂j(Ai)dx
j ∧ dxi +

1

2
[Ai, Aj]dx

i ∧ dxj (77)

∴ Fijdx
i ⊗ dxj = (∂i(Aj)− ∂j(Ai) + [Ai, Aj])dx

i ⊗ dxj (78)

∴ Fij = ∂iAj − ∂jAi + [Ai, Aj] (79)

This famous formula will rear its head repeatedly in section 2. Unlike connections, the local
connection 2-forms also transform much more nicely on overlaps.

Theorem 1.27. On trivialising patch overlaps, Vα∩Vβ, the local connection 2-forms transform
as Fβ = AdgβαFα.

Proof. Using theorem 1.14,

Fβ = dAβ +
1

2
[Aβ ∧ Aβ] (80)

= d
(
gβαdg

−1
βα +AdgβαAα

)
+

1

2

[(
gβαdg

−1
βα +AdgβαAα

)
∧
(
gβαdg

−1
βα +AdgβαAα

)]
(81)

In this case, I will write AdgβαAα as gβαAαg
−1
βα as convenient notation (with transtions functions

on the right and left being understood as pushforwards under right and left multiplication

5I think there may be an issue here about whether ξ can really be taken as a constant in the definition of v.
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respectively6). Then,

Fβ = d(gβα) ∧ dg−1
βα + 0 + d(gβα) ∧ Aαg

−1
βα + gβαd(Aα)g

−1
βα − gβαAα ∧ dg−1

βα

+
1

2
[gβαdg

−1
βα ∧ gβαdg

−1
βα ] +

1

2
[gβαAαg

−1
βα ∧ gβαdg

−1
βα ] +

1

2
[gβαdg

−1
βα ∧ gβαAαg

−1
βα ]

+
1

2
[gβαAαg

−1
βα ∧ gβαAαg

−1
βα ] (82)

The 1
2
factors accommodate for the paired of the Lie bracket and the wedge product. Thus,

1

2
[gβαdg

−1
βα ∧ gβαdg

−1
βα ] = gβαdg

−1
βαgβα ∧ dg−1

βα = −d(gβα) ∧ dg−1
βα (83)

1

2
[gβαAαg

−1
βα ∧ gβαdg

−1
βα ] = gβαAαg

−1
βαgβα ∧ dg−1

βα = gβαAα ∧ dg−1
βα (84)

1

2
[gβαdg

−1
βα ∧ gβαAα] = gβαdg

−1
βαgβα ∧ Aα = −d(gβα) ∧ Aα (85)

1

2
[gβαAαg

−1
βα ∧ gβαAαg

−1
βα ] =

1

2
gβα[Aα ∧ Aα]g

−1
βα (86)

Inserting these four expressions into equation 82 leaves Fβ = gβα(dAα +
1
2
[Aα ∧Aα])g

−1
βα , which

is exactly AdgβαFα. □

I have now devoted many pages to connections on principal bundles. Luckily, connections on
vector bundles are not a huge leap from here - indeed a connection on a vector bundle will
always be derived from one on a principal bundle.

Definition 1.28 (Associated vector bundle). Let ρ : G → GL(V ) be a (linear) representation
of G and let π : P → B be a G-bundle. Then, the associated vector bundle is defined to be
(P × V )/((p · g, v) ∼ (p, ρ(g)v)). This is a vector bundle over B and is denoted P ×G V . In
more elementary terms, for a G-bundle with transition functions, gβα, the associated vector
bundle is the vector bundle with transition functions, ρ(gβα).

Proof. For the proof, the equivalence relation, (p · h, v) ∼ (p, ρ(h)v), is more conveniently
written as (p, v) ∼ (p · h, ρ(h)−1v).
Let Φα : π−1(Vα) → Vα ×G be local trivialisations of P . Then, Φα(p) = (b, g) for some b ∈ Vα

and g ∈ G.
Then, define local trivialisations of P ×G V , Φ′

α : π−1(Vα) → Vα × V , by Φ′
α(p, v) = (b, ρ(g)v).

This is well defined because the equivalent point, (p · h, ρ(h)−1v), has Φα(p · h) = (b, gh) by
definition and thus Φ′

α(p · h, ρ(h)−1v) = (b, ρ(gh)ρ(h)−1v) = (b, ρ(g)v) = Φ′
α(p, v).

Next, consider p on overlaps. On P , the transition functions are defined so that
Φα(p) = (b, g) =⇒ Φβ(p) = (b, gβα(p)g).
∴ (Φ′

β ◦ Φ′
α)(b, v) = Φ′

β(p, ρ(g)
−1v) = (b, ρ(gβα(p)g)ρ(g)

−1v) = (b, ρ(gβα(p))v).
∴ The transition functions of P ×G V are indeed ρ(gβα). □

In some sense, the association goes the other way too. In particular, for every vector bundle,
there is one particular principal bundle that will play a useful role in what follows.

Definition 1.29 (Frame bundle). Let π : E → B be a rank-k vector bundle with transition
functions, gβα ∈ GL(k,R). Let F (Rk) be the set of ordered bases in Rk. Then, the frame bundle

6I believe this interpretation is fine for what follows, although I am sometimes suspicious the rest of the
proof only works for matrix Lie groups.
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of E, denoted F (E), is a principal GL(k,R)-bundle defined to be the space of ordered bases in
each fibre, i.e.

F (E) =

(⊔
α

Vα × F (Rk)

)/((
b ∈ Vα, (e1, . . . , ek)

)
∼

(
b ∈ Vβ, (gβα(b)e1, . . . , gβα(b)ek)

))
(87)

∴ By construction, F (E) is a principal bundle with the same transition functions as the vector
bundle, E.

Corollary 1.29.1. If ρ : GL(k,R) → GL(Rk) is the defining representation, then the associated
vector bundle of F (E) is E itself.

Definition 1.30 (Connection on a vector bundle). A connection on a vector bundle is defined
to be a connection on its frame bundle.

Definition 1.31 (Induced connection). Given a connection, A, on a G-bundle, π : P → B,
and a representation, ρ : G → GL(V ), the induced connection on the associated vector bundle
is defined by local connection 1-forms, ρ∗Aα (where ρ∗ acts on the g-valued part of Aα).

Having gone through this seemingly never-ending jiggery-pokery, I have finally completed laying
the foundations for the main purpose of connections - differentiating vectors on curved spaces.

Definition 1.32 (Covariant derivative on a vector bundle). Let π : E → B be a rank-k vector
bundle, let A be a connection on E, let s : B → E be a section and let pr2 ◦Φα(s|Vα) = vα ∈ Rk

be the local version of s. Then, the covariant derivative of s with respect to A, denoted dAs, is
the E-valued 1-form on B defined locally by dvα + Aαvα.

Proof. It has to be checked that these local constructions glue together to give a well defined
global object.
Note that because GL(k,R) is a matrix Lie group, pushforwards are just matrix multiplication.
Furthermore, gl(k,R) is just the set of all k × k matrices.
In a different trivialising patch, vβ = gβαvα by the definition of transition functions and
Aβ = gβαAαg

−1
βα + gβαdg

−1
βα by theorem 1.14.

dvβ + Aβvβ = d(gβαvα) + (gβαAαg
−1
βα + gβαd(g

−1
βα))gβαvα (88)

= d(gβα)vα + gβαdvα + gβαAαvα + gβαd(g
−1
βα)gβαvα (89)

= d(gβα)vα + gβαdvα + gβαAαvα − d(gβα)vα (90)

= gβα(dvα + Aαvα) (91)

which is the required transformation property for dvα + Aαvα to define a globally E-valued
object. The 1-form part requires no checking; it is manifest already. □

This proof illustrates the reason the Aα are thought of as compensating fields in physics. They
are non-homogeneous, non-tensorial additions to dvα - the “naive” derivative - inserted to make
the resultant object transform properly under a change of local trivialisation.

These definitions also have a little bit more generality than might initially appear. From
any representation, ρ : G → GL(V ), I can construction its dual representation and subse-
quently various tensor products of representations. This way, given a covariant derivative on
a vector bundle, π : E → B, I also get covariant derivatives of sections of E∗, E ⊗ E∗ etc. I’ll
give concrete examples of how this works in section 2.1.

There is also the following generalisation to the covariant derivative just defined.
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Definition 1.33 (Exterior covariant derivative). Let π : E → B be a vector bundle and let σ
be an E-valued p-form on B. Therefore, locally σ can be written as the sum of expressions,
s⊗ α, where s is a section of E and α is a p-form.
The exterior covariant derivative, dAσ, is then defined locally by dA(s⊗α) = (dAs)∧α+s⊗dα.

The notation is a bit clunky here, but its application in the next theorem will hopefully make
the meaning clearer.

Theorem 1.34. (dA)2σ = F ∧ σ, where F is interpreted as a gl(V )-valued 2-form acting on
the E-valued part of σ and E’s fibres are the vector space, V .

Proof. Let σ be s⊗ w locally and let the section, s, be vα locally. Then,

dA(vα ⊗ w) = dA(vα) ∧ w + vα ⊗ dw (92)

= (dvα) ∧ w + (Aαvα) ∧ w + vα ⊗ dw (93)

where in the first two terms (and henceforth in this proof) I’m adopting the convention of
leaving off the ⊗ when there’s already an infix symbol, ∧ in this case.
The rest of the proof is easiest in local coordinates.
∴ dvα = ∂µ(vi)ei ⊗ dxµ where {ei}ki=1 is some basis of Rk, Aα = Aijµdx

µ where the i and j are
the matix indices of elements of gl(k,R) and w = wIdx

I where dxI is multi-index notation.

∴ dA(vα ⊗ w) = (∂µ(vi)wI + AijµvjwI + vi∂µ(wI))ei ⊗ dxµ ∧ dxI (94)

I’ll apply the second dA separately to each term on the RHS. Omitting terms that are zero due
to symmetries being contracted with antisymmetries, I get the following.

dA(∂µ(vi)wIei ⊗ dxµ ∧ dxI)

= ∂ν(∂µ(vi)wI)ei ⊗ dxν ∧ dxµ ∧ dxI + Aijν∂µ(vj)wIei ⊗ dxν ∧ dxµ ∧ dxI (95)

= (Aijµ∂ν(vj)wI + ∂ν(vi)∂µ(wI))ei ⊗ dxµ ∧ dxν ∧ dxI (96)

dA(AijµvjwIei ⊗ dxµ ∧ dxI)

= (∂µ(AijνvjwI) + AikµAkjνvjwI)ei ⊗ dxµ ∧ dxν ∧ dxI (97)

dA(vi∂µ(wI)ei ⊗ dxµ ∧ dxI) (98)

= (∂µ(vi)∂ν(wI) + Aijµvj∂ν(wI))ei ⊗ dxµ ∧ dxν ∧ dxI (99)

Putting them all together,

(dA)2σ = (Aijµ∂ν(vj)wI + ∂ν(vi)∂µ(wI) + ∂µ(AijνvjwI) + AikµAkjνvjwI + ∂µ(vi)∂ν(wI)

+ Aijµvj∂ν(wI))ei ⊗ dxµ ∧ dxν ∧ dxI (100)

= (Aijµ∂ν(vj)wI + ∂ν(vi)∂µ(wI) + ∂µ(Aijν)vjwI + Aijν∂µ(vj)wI + Aijνvj∂µ(wI)

+ AikµAkjνvjwI + ∂µ(vi)∂ν(wI) + Aijµvj∂ν(wI))ei ⊗ dxµ ∧ dxν ∧ dxI (101)

= (∂µ(Aijν)vjwI + AikµAkjνvjwI)ei ⊗ dxµ ∧ dxν ∧ dxI by µ− ν antisymmetry (102)

= (∂µ(Aijν) + AikµAkjν)vjwIei ⊗ dxµ ∧ dxν ∧ dxI (103)

On the other hand, Fµν = ∂µ(Aν) − ∂ν(Aµ) + [Aµ, Aν ] from equation 79. Restoring the i, j
indices and noting that the Lie bracket in gl(k,R) is just the commutator,

F ∧ σ =
(1
2
Fijµνvjei ⊗ dxµ ∧ dxν

)
∧ (wIdx

I) (104)

=
1

2
(∂µ(Aijν)− ∂ν(Aijµ) + AikµAkjν − AikνAkjµ)vjwIei ⊗ dxµ ∧ dxν ∧ dxI (105)

= (∂µ(Aijν) + AikµAkjν)vjwIei ⊗ dxµ ∧ dxν ∧ dxI (106)

which is exactly (dA)2σ from above. □
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2 Applications

2.1 Riemannian geometry

The simplest application of the general theory discussed in section 1 is the construction of co-
variant derivatives on the tangent bundle. These are exactly the standard covariant derivatives
of tensor fields that is one is introduced to in a standard exposition of Riemannian geometry.
In fact, it’s to make connection7 with these familiar results that I’ve chosen to present this
application first.

Definition 2.1 (Connection on a manifold). For any manifold, M , a connection on M is
defined to be connection on its tangent bundle, TM .

Definition 2.2 (∇ notation). In this context, the covariant derivative is denoted ∇. Further-
more, the one form component gained when acting with ∇ is denoted with a subscript like ∇i.
For example, given a vector field, v = vi(x)∂i in local coordinates, it’s covariant derivative,
∇v, is denoted ∇v = ∇i(v

j)dxi ⊗ ∂j in local coordinates.

Throughout this section, I’ll be using local coordinate patches to trivialise TM .
∴ The transition functions are just change of coordinate matrices, ∂x′i/∂xj.
Furthermore, these matrices must be invertible because change of coordinates must be invert-
ible.
∴ The structure group of TM is GL(n,R), where n = dim(M) throughout.

Definition 2.3 (Christoffel symbols). The (gl(n,R)-valued) local connection 1-forms on a
manifold are called Christoffel symbols and denoted Γi

jk(x)dx
k in local coordinates.

Given the local connection 1-forms, Aα, act by matrix multiplication in definition 1.32, the
positioning of the i and j indices in Γi

jk(x)dx
k is meant to indicate that being (gl(n,R)-

valued) at each point means the i and j indices form a local section of the endomorphism
bundle, End(TM).

Theorem 2.4. Under a change of coordinates, xi 7→ x′i, the Christoffel symbols transform as

Γ′i
jk =

∂x′i

∂xl

∂xm

∂x′j
∂xn

∂x′kΓ
l
mn +

∂x′i

∂xl

∂2xl

∂x′jx′k (107)

Proof. Proving this theorem is only a matter of applying theorem 1.14 to this particular in-
stance of a connection. Here, g = gl(n,R) and thus like with any matrix Lie group, all
pushforwards are just matrix multiplication. Furthermore, since I’m using local coordinate
patches to trivialise the tangent bundle,

gβα(p) =
∂x′

∂x

∣∣∣∣
p

and g−1
βα(p) =

∂x

∂x′

∣∣∣∣
p

(108)

Substituting these into theorem 1.14,

Γ′i
jkdx

′k =
∂x′i

∂xl
Γl

mk

∂xm

∂x′j dx
k +

∂x′i

∂xl
d

(
∂xl

∂x′j

)
(109)

=
∂x′i

∂xl

∂xm

∂x′j
∂xn

∂x′kΓ
l
mndx

′k +
∂x′i

∂xl

∂2xl

∂x′kx′j dx
′k (110)

∴ From the coefficients of dx′k it follows that the Christoffel symbols transform exactly as
claimed in the theorem. □

7no pun intended
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Theorem 2.5. In local coordinates, the covariant derivative acts on an arbitrary tensor as

∇iT
j1···ja

k1···kb = ∂iT
j1···ja

k1···kb +
a∑

l=1

Γjl
miT

j1···ĵlm···ja
k1···kb −

b∑
l=1

Γm
kli
T j1···ja

k1···k̂lm···kb
(111)

where a hat denotes an omitted index in a list.

Proof. Given a representation, ρ : GL(n,R) → GL(V ), the induced connection is ρ∗ of the
original connection.
Vectors transform under the defining representation. Hence, by definition 1.32, if v = vi∂i in
local coordinates, then

∇vi = dvi + (Γ · v)i (112)

= ∂j(v
i)dxj + Γi

kjv
kdxj (113)

∴ ∇jv
i = ∂j(v

i) + Γi
kjv

k (114)

From here, I can build up the general result based on the various tensor representations of
GL(n,R). In particular, covectors transform under the dual of the defining representation,
ρ(A) = A−T for any A ∈ GL(n,R).
∴ The general tensor representation is ρ(A) = A⊗ · · · ⊗ A⊗ A−T ⊗ · · · ⊗ A−T , with a lots of
A and b lots of A−T .
Since g = TeG, Γ ∈ gl(n,R) ⊗ T ∗M can be viewed (for the gl(n,R) part) as the equivalence
class, [etΓ].
Hence, the connection I need for the general tensor product is

ρ∗[e
tΓ] = [ρ(etΓ)] (115)

= [etΓ ⊗ · · · ⊗ etΓ ⊗ e−tΓT ⊗ · · · ⊗ e−tΓT

] (116)

=
d

dt
(etΓ ⊗ · · · ⊗ etΓ ⊗ e−tΓT ⊗ · · · ⊗ e−tΓT

)|t=0 (117)

=
a∑

i=1

Γ in ith place−
b∑

i=1

ΓT in (a+ i)th place (118)

with I in all the remaining tensor product slots in the sum of the last line.
With the Γ or ΓT now acting on the corresponding index of T j1···ja

k1···kb , I get exactly the result
claimed in the statement of the theorem. □

Corollary 2.5.1. The covariant derivative satisfies the Liebniz rule.

Proof. Using the theorem,

∇i(S
j1···ja

k1···kbT
l1···lc

m1···md
)

= ∂i(S
j1···ja

k1···kbT
l1···lc

m1···md
) +

a∑
n=1

Γjn
piS

j1···ĵnp···ja
k1···kbT

l1···lc
m1···md

+
c∑

n=1

Γln
piS

j1···ja
k1···kbT

l1···l̂np···lc
m1···md

−
b∑

n=1

Γp
kni

Sj1···ja
k1···k̂np···kb

T l1···lc
m1···md

−
d∑

n=1

Γp
mni

Sj1···ja
k1···kbT

l1···lc
m1···m̂np···md

(119)
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∴∇i(S
j1···ja

k1···kbT
l1···lc

m1···md
)

=

(
∂i(S

j1···ja
k1···kb ) +

a∑
n=1

Γjn
piS

j1···ĵnp···ja
k1···kb −

b∑
n=1

Γp
kni

Sj1···ja
k1···k̂np···kb

)
T l1···lc

m1···md

+ Sj1···ja
k1···kb

(
∂i(T

l1···lc
m1···md

) +
c∑

n=1

Γln
piT

l1···l̂np···lc
m1···md

−
d∑

n=1

Γp
mni

T l1···lc
m1···m̂np···md

)
(120)

= ∇i(S
j1···ja

k1···kb )T
l1···lc

m1···md
+ Sj1···ja

k1···kb∇i(T
l1···lc

m1···md
) (121)

which is exactly the Liebniz rule □

Definition 2.6 (Torsion). Let θ be the TM valued 1-form, θ(v) = v for any vector field, v.
The torsion of a connection is defined to be T = dAθ. A connection is called torsion-free if and
only if T = 0.

Theorem 2.7. T is a tensor that in local coordinates is T = −(Γi
jk − Γi

kj)∂i ⊗ dxj ⊗ dxk.

Proof. θ(∂i) = ∂i = δji∂j.
∴ In components, θ is δji, where j is the “TM -valued” part and i is the “1-form” part. Then,
from definition 1.33,

T = dAθ (122)

= dA(δij∂idx
j) (123)

= (∂k(δ
i
j ) + Γi

lkδ
l
j )∂i ⊗ dxk ∧ dxj + δij∂i ⊗ d2xj (124)

= −(Γi
jk − Γi

kj)∂i ⊗ dxj ⊗ dxk (125)

as claimed. □

Corollary 2.7.1. A torsion-free connection has Γi
jk = Γi

kj in local coordinates.

Corollary 2.7.2. In a coordinate-free way, the torsion tensor acts on arbitrary vector fields,
v and w, by T (v, w) = ∇vw −∇wv − [v, w], where ∇v = va∇a.

Proof. In local coordinates,

RHS = vj∇jw
i − wj∇jv

i − vj∂jw
i + wj∂jv

i (126)

= vj∂jw
i + vjΓi

kjw
k − wj∂jv

i − wjΓi
kjv

k − vj∂jw
i + wj∂jv

i (127)

= −(Γi
jk − Γi

kj)v
jwk (128)

= LHS (129)

Since both sides are tensors, agreeing in one basis means they agree in general. □

Definition 2.8 (Metric on a vector bundle). A metric, g, on a vector bundle, π : E → B, is
a section of E∗ ⊗ E∗ that is fibrewise symmetric and non-degenerate.

In more down-to-Earth terms, a metric is a bilinear form on each fibre that fits together in some
smooth way. Unfortunately, it has nothing directly to do with metric spaces. I have always
felt the name was simply chosen by a sadist who sought to confuse students for all posterity.

Definition 2.9 (Inner product on a vector bundle). If a metric on a vector bundle is fibrewise
positive-definite, then it is called an inner product.
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Definition 2.10 (Metrics on a manifold). A metric on a manifold is defined to be a metric on
the tangent bundle. If the metric is positive-definite, it is called Riemannian.

Definition 2.11 (Raising and lower indices). Given a metric, g, on a manifold, let gij denote
the components of the inverse matrix of gij. Thus, gij defines a type-(2, 0) tensor (because
non-degenerate bilinear forms define isomorphisms between a vector space and its dual vector
space). Furthermore, indices are raised and lowered using gij and gij respectively.

For example, given an object, Vi, on a manifold, V i would mean gijVj. Likewise, given an
object, W i, on an manifold, Wi would mean gijW

j.

Theorem 2.12. Every vector bundle, π : E → B, admits an inner product.

Proof. Cover E with trivialisations, Φ−1
α : π−1(Vα) → Vα × Rk.

On each π−1(Vα), there’s an inner product, gα, corresponding to the standard inner product
on Rk.
Let {ρα} be a partition of unity subordinate to {Vα}.
Finally, let g =

∑
α ραgα. As each gα is bilinear, symmetric and positive-definite, so is g. □

Corollary 2.12.1. Every manifold admits a Riemannian metric.

Observe that the theorem’s proof relies critically on positive-definiteness. If any other metric
signature were used, then upon summing in the partition of unity, the result could be anything.
Unfortunately, in physics, metrics are almost always needed in the context of relativity, where
the metric must be Lorentzian, i.e. a bilinear form with signature, (−1, 1, · · · , 1), which is not
positive-definite. Indeed, I am reliably informed that not every manifold admits a metric of
this sort.

Definition 2.13 (Metric-compatible). A connection on a manifold with metric, g, is called
metric-compatible if and only if ∇g = 0.

Definition 2.14 (Levi-Civita connection). On any manifold with metric, there exists a unique
metric-compatible, torsion-free connection, called the Levi-Civita connection.

Proof. It suffices to just find the Christoffel symbols for the Levi-Civita connection. From
corollary 2.7.1, Γi

jk = Γi
kj.

Then, from theorem 2.5, the metric compatibility condition says

0 = ∂igjk − Γl
jiglk − Γl

kigjl (130)

= ∂igjk − Γkji − Γjki (131)

Then, with the benefit of already knowing the correct answer, observe that the previous equa-
tion means

1

2
(∂igjk + ∂jgki − ∂kgij) =

1

2
(Γkji + Γjki + Γikj + Γkij − Γjik − Γijk) (132)

= Γkij using the torsion− free condition (133)

∴ The connection components are uniquely determined.
To prove existence though, I still need to check that these connection components satisfy the
transformation law of theorem 2.4. Satisfying that transformation law guarantees I have a
well-defined connection because of theorem 1.15
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The metric and its inverse are tensors, so their components transform as per the standard rules
for tensors. Hence,

Γ′i
jk =

1

2
g′il(∂′

jg
′
kl + ∂′

kg
′
lj − ∂′

lg
′
jk) (134)

=
1

2

∂x′i

∂xm

∂x′l

∂xn
gmn

(
∂xp

∂x′j ∂p

(
∂xq

∂x′k
∂xr

∂x′l gqr

)
+

∂xp

∂x′k ∂p

(
∂xq

∂x′l
∂xr

∂x′j gqr

)
− ∂xp

∂x′l∂p

(
∂xq

∂x′j
∂xr

∂x′k gqr

))
(135)

=
∂x′i

∂xl

∂xm

∂x′j
∂xn

∂x′kΓ
l
mn +

1

2

∂x′i

∂xm

∂x′l

∂xn
gmn

(
gqr

∂xr

∂x′l
∂2xq

∂x′jx′k + gqr
∂xq

∂x′k
∂2xr

∂x′jx′l + gqr
∂xr

∂x′j
∂2xq

∂x′kx′l

+ gqr
∂xq

∂x′l
∂2xr

∂x′kx′j − gqr
∂xr

∂x′k
∂2xq

∂x′lx′j − gqr
∂xq

∂x′j
∂2xr

∂x′lx′k

)
(136)

=
∂x′i

∂xl

∂xm

∂x′j
∂xn

∂x′kΓ
l
mn +

∂x′i

∂xm

∂x′l

∂xn
gmngqr

∂xr

∂x′l
∂2xq

∂x′jx′k (137)

=
∂x′i

∂xl

∂xm

∂x′j
∂xn

∂x′kΓ
l
mn +

∂x′i

∂xm
gmngqrδ

r
n

∂2xq

∂x′jx′k (138)

=
∂x′i

∂xl

∂xm

∂x′j
∂xn

∂x′kΓ
l
mn +

∂x′i

∂xm

∂2xm

∂x′jx′k (139)

which matches theorem 2.4. □

The substance of the previous definition is sometimes also given the infinitely grander title of
the “fundamental theorem of Riemannian geometry.”

Definition 2.15 (Riemann tensor). The local curvature 2-form of a connection on a manifold
(not necessarily Levi-Civita) is called the Riemann tensor.

Theorem 2.16. The Riemann tensor really is a tensor across the whole manifold and is given
in local coordinates by

Ri
jkl = ∂k(Γ

i
jl)− ∂l(Γ

i
jk) + Γi

mkΓ
m
jl − Γi

mlΓ
m
jk (140)

where k and l are the 2-form indices and i and j are the gl(n,R) indices.

Proof. The local curvature 2-form is defined in local coordinates be equation 79. Restoring the
suppressed Lie algebra indices (just matrix indices in the case of gl(n,R)) in that equation,
letting Γk denote the matrix whose components are Γi

jk and noting that the Lie bracket is just
matrix commutator for gl(n,R), equation 79 says

Ri
jkl = ∂k(Γ

i
jl)− ∂l(Γ

i
jk) + [Γk,Γl]

i
j (141)

= ∂k(Γ
i
jl)− ∂l(Γ

i
jk) + Γi

mkΓ
m
jl − Γi

mlΓ
m
jk (142)

which proves the second half of the theorem. For the first half, applying theorem 1.27 with
gβα = ∂x′/∂x implies that upon a change of coordinates,

R′i
jkldx

′kdx′l =
∂x′i

∂xm
Rm

nkl

∂xn

∂x′j dx
kdxl (143)

=
∂x′i

∂xm

∂xn

∂x′j
∂xp

∂x′k
∂xq

∂x′lR
m
npqdx

′kdx′l (144)

∴ R′i
jkl =

∂x′i

∂xm

∂xn

∂x′j
∂xp

∂x′k
∂xq

∂x′lR
m
npq (145)

which is exactly the required transformation property on overlaps to ensure that Ri
jkl forms a

type-(1, 3) tensor globally on the manifold. □
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Theorem 2.17. For a Levi-Civita connection, the Riemann tensor vanishes if and only if ∃
local coordinates, xi, such that g = ηijdx

i ⊗ dxj.

Proof. First, assume g = ηijdx
i ⊗ dxj.

Then, since gij = ηij are constants, by equation 133, Γi
jk = 0 and thus by theorem 2.16,

Ri
jkl = 0.

For the much harder direction, first assume R = 0.
On principle bundles, as proven earlier, local sections are equivalent to trivialisations.
∴ Fα = 0 ⇐⇒ F = 0.
In this case, that means R = 0 if and only if the corresponding curvature on the principal
bundle is zero.
Then, by theorems 1.25 and 1.22, R = 0 =⇒ Γα = 0 in some local basis, {ei}ni=1, for the
tangent bundle8. Let {εi}ni=1 be the dual basis over this trivialising patch.
In any basis, by definition, ∇(viei) = d(vi)ei + (Γα)

i
jv

jei, where I’m only showing the gl(n,R)
indices.
∴ ∇(ei) = (Γα)

j
iej, which in this case is just zero because Γα = 0.

Then, applying corollary 2.7.2 to the present torsion-free connection,
[ei, ej] = ∇eiej −∇ejei = 0− 0 = 0.
A local tangent bundle basis is known (e.g. from Frobenius’ theorem) to be commuting if and
only if it is coordinate induced, so it follows that ei = ∂i for some local coordinates, xi. Now I
can apply the coordinate expressions for the Christoffel symbols deduced in equation 133.

∴ 0 = Γijk + Γjik (146)

=
1

2
(∂jgki + ∂kgij − ∂igjk + ∂igkj + ∂kgji − ∂jgik) (147)

= ∂kgij (148)

Since the metric components are locally constant, I can perform a linear change of coordinates,
x′i = M i

j x
j, such that

g′ij =
∂xk

∂x′i
∂xl

∂x′j gkl = (M−1)ki(M
−1)ljgkl = ηij (149)

throughout the coordinate patch. □

Theorem 2.18. For an arbitrary connection, the covariant derivatives satisfy the commutata-
tor identity,

[∇i,∇j]A
k1···kp

l1···lq = −Tm
ij ∇mA

k1···kp
l1···lq +

p∑
a=1

Rka
mijA

k1···k̂am···kp
l1···lq

−
q∑

a=1

Rm
laijA

k1···kp
l1···l̂amlq

(150)

where A is an arbitrary tensor field and Tm
ij are the components of the torsion tensor.

Proof. Both sides are local, so it suffices to check the statement in local coordinates. I’ll start

8i.e. the {ei}ni=1 is a fibrewise basis generated from the collection of local sections, {si}ni=1, that trivialises
TM over the patch, Vα, in which Γα = 0.
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by only considering A to be a scalar, vector or covector. Using theorems 2.5, 2.7 and 2.16,

[∇i,∇j]A

= ∇i∇jA−∇j∇iA (151)

= ∂i(∇jA)− Γk
ji∇kA− ∂j(∇iA)− Γk

ij∇kA (152)

= ∂i∂jA− Γk
ji∂kA− ∂j∂iA− Γk

ij∂kA (153)

= (Γk
ij − Γk

ji)∂kA (154)

= −T k
ij ∇kA (155)

[∇i∇j]A
k

= ∇i∇jA
k −∇j∇iA

k (156)

= ∂i(∇jA
k)− Γm

ji∇mA
k + Γk

mi∇jA
m − ∂j(∇iA

k) + Γm
ij∇mA

k − Γk
mj∇iA

m (157)

= −Tm
ij ∇mA

k + ∂i∂jA
k + ∂i(Γ

k
mj)A

m + Γk
mj∂iA

k + Γk
mi∂jA

k + Γk
miΓ

m
njA

n

− ∂j∂iA
k − ∂j(Γ

k
mi)A

m − Γk
mi∂jA

k − Γk
mj∂iA

k − Γk
mjΓ

m
niA

n (158)

= −Tm
ij ∇mA

k + (∂i(Γ
k
mj) + Γk

niΓ
n
mj − ∂j(Γ

k
mi)− Γk

njΓ
n
mi)A

m (159)

= −Tm
ij ∇mA

k +Rk
mijA

m (160)

[∇i,∇j]Ak

= ∇i∇jAk −∇j∇iAk (161)

= ∂i(∇jAk)− Γm
ji∇mAk − Γm

ki∇jAm − ∂i(∇jAk) + Γm
ji∇mAk + Γm

ki∇jAm (162)

= −Tm
ij ∇mAk + ∂i∂jAk − ∂i(Γ

m
kj)Am − Γm

kj∂iAm − Γm
ki∂jAm + Γm

kiΓ
n
mjAn

− ∂j∂iAk + ∂j(Γ
m
ki)Am + Γm

ki∂jAm + Γm
kj∂iAm − Γm

kjΓ
n
miAn (163)

= −Tm
ij ∇mAk − (∂i(Γ

m
kj)− Γn

kiΓ
m
nj − ∂j(Γ

m
ki) + Γn

kjΓ
m
ni)Am (164)

= −Tm
ij ∇mAk −Rm

kijAm (165)

which confirms the theorem in these three special cases.
However, because of the way the covariant derivative acts “index by index” in theorem 2.5, the
general result follows immediately. □

The Riemann tensor possesses many symmetries that are not manifestly apparent. There are
often deep reasons for these symmetries, but I will not bother cataloguing those reasons here.

Theorem 2.19. The Riemann tensor satisfies the following properties.

1. Ri
jkl = −Ri

jlk for an arbitrary connection

2. Rijkl = −Rjikl for the Levi-Civita connection

3. Rijkl = Rklij for the Levi-Civita connection

4. Ri
[jkl] = 0 for a torsion-free connection (1st Bianchi identity)

5. ∇[iR
j
|k|lm] = 0 for a torsion-free connection (2nd Bianchi identity)

Proof. (1) is immediate because k and l are the two-form indices of the curvature and are thus
automatically antisymmetric.
Next, assume the connection is torsion-free. Then, from theorem 2.18, for an arbitrary vector
field, V ,

[∇i, [∇j,∇k]]V
l = ∇i(R

l
mjkV

m)− [∇j,∇k]∇iV
l (166)

= ∇i(R
l
mjk)V

m +Rl
mjk∇iV

m −Rl
mjk∇iV

m +Rm
ijk∇mV

l (167)

= ∇i(R
l
mjk)V

m +Rm
ijk∇mV

l (168)
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Since commutators satisfy the Jacobi identity, it follows that

0 = [∇i, [∇j,∇k]]V
l + [∇j, [∇k,∇i]]V

l + [∇k, [∇i,∇j]]V
l (169)

= ∇i(R
l
mjk)V

m +Rm
ijk∇mV

l +∇j(R
l
mki)V

m +Rm
jki∇mV

l

+∇k(R
l
mij)V

m +Rm
kij∇mV

l (170)

= (∇i(R
l
mjk) +∇j(R

l
mki) +∇k(R

l
mij))V

m + (Rm
ijk +Rm

jki +Rm
kij)∇mV

l (171)

Then, because V is arbitrary, properties (4) and (5) must be true.
Finally, let the connection be Levi-Civita.
Let V and W be arbitrary tensor fields. Then, gijV

iW j is a scalar and theorem 2.18 implies

0 = [∇i,∇j](gklV
kW l) (172)

= gkl[∇i,∇j](V
kW l) as ∇igjk = 0 for the Levi− Civita connection (173)

= gkl(∇i(∇j(V
k)W l + V k∇jW

l)−∇j(∇i(V
k)W l + V k∇iW

l)) (174)

= gkl(∇i∇j(V
k)W l +∇j(V

k)∇i(W
l) +∇i(V

k)∇j(W
l) + V k∇i∇jW

l

−∇j∇i(V
k)W l +∇i(V

k)∇j(W
l) +∇j(V

k)∇i(W
l) + V k∇j∇iW

l) (175)

= gkl(W
l[∇i,∇j]V

k + V k[∇i,∇j]W
l) (176)

= gkl(R
k
mijV

mW l +Rl
mijW

mV k) (177)

= (Rlkij +Rklij)V
kW l (178)

∴ As V and W are arbitrary, property (2) must hold.
Then, liberally utilising properties (1), (2) and (4),

Rijkl = −Riklj −Riljk (179)

= Rkilj +Rlijk (180)

= −Rklji −Rkjil −Rljki −Rlkij (181)

= 2Rklij +Rjkil +Rjlki (182)

= 2Rklij −Rjilk (183)

= 2Rklij −Rijkl (184)

∴ Rijkl = Rklij (185)

which is property (3). □

Definition 2.20 (Ricci tensor and scalar). The Ricci tensor and Ricci scalar are defined by
Rij = Rk

ikj and R = Ri
i respectively.

Theorem 2.21. When using a Levi Civita connection, the Ricci tensor and scalar satisfy

1. Rij = Rji

2. ∇jRij =
1
2
∇iR

Proof. Using the Riemann tensor’s algebraic symmetries, Rij = Rk
ikj = R k

kj i = Rk
jki = Rji,

which is property (1).
For property (2), contracting indices on the 2nd Bianchi identity and then applying the alge-
braic symmetries and using property (1),
0 = ∇iRjk

jk +∇jR
jk i

k +∇kR
jki

j = ∇iR−∇jR
ji −∇kR

ki =⇒ ∇jRij =
1
2
∇iR. □

2.2 Non-coordinate bases

2.3 Yang-Mills theory

2.4 Conformal geometry
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